Ensemble forecasting of species distributions.
نویسندگان
چکیده
Concern over implications of climate change for biodiversity has led to the use of bioclimatic models to forecast the range shifts of species under future climate-change scenarios. Recent studies have demonstrated that projections by alternative models can be so variable as to compromise their usefulness for guiding policy decisions. Here, we advocate the use of multiple models within an ensemble forecasting framework and describe alternative approaches to the analysis of bioclimatic ensembles, including bounding box, consensus and probabilistic techniques. We argue that, although improved accuracy can be delivered through the traditional tasks of trying to build better models with improved data, more robust forecasts can also be achieved if ensemble forecasts are produced and analysed appropriately.
منابع مشابه
Approximating Posterior Distributions in Ensemble Forecasting
Ensemble forecasting is used in numerical weather prediction to give an improved estimate of the atmospheric state and to improve measures of forecast accuracy. While the method is effective, there are some fundamental issues in interpreting the ensemble as a statistically valid representation of uncertainty in the state of the atmosphere. Coupled with this interpretation is the difficulty in t...
متن کاملIncorporating abundance information and guiding variable selection for climate-based ensemble forecasting of species' distributional shifts
Ecological niche models (ENMs) have increasingly been used to estimate the potential effects of climate change on species' distributions worldwide. Recently, predictions of species abundance have also been obtained with such models, though knowledge about the climatic variables affecting species abundance is often lacking. To address this, we used a well-studied guild (temperate North American ...
متن کاملProbabilistic Wind Vector Forecasting Using Ensembles and Bayesian Model Averaging
Probabilistic forecasts of wind vectors are becoming critical as interest grows in wind as a clean and renewable source of energy, in addition to a wide range of other uses, from aviation to recreational boating. Unlike other common forecasting problems, which deal with univariate quantities, statistical approaches to wind vector forecasting must be based on bivariate distributions. The prevail...
متن کاملProbabilistic Weather Forecasting in R
Abstract This article describes two R packages for probabilistic weather forecasting, ensembleBMA, which offers ensemble postprocessing via Bayesian model averaging (BMA), and ProbForecastGOP, which implements the geostatistical output perturbation (GOP) method. BMA forecasting models use mixture distributions, in which each component corresponds to an ensemble member, and the form of the compo...
متن کاملProbabilistic Precipitation Forecasting Based on Ensemble Output Using Generalized Additive Models and Bayesian Model Averaging
A probabilistic precipitation forecasting model using generalized additive models (GAMs) and Bayesian model averaging (BMA) was proposed in this paper. GAMs were used to fit the spatial-temporal precipitation models to individual ensemble member forecasts. The distributions of the precipitation occurrence and the cumulative precipitation amount were represented simultaneously by a single Tweedi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Trends in ecology & evolution
دوره 22 1 شماره
صفحات -
تاریخ انتشار 2007